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The Navier-Stokes and energy equations for the steady, incompressible, laminar flow past a 
circular cylinder at constant temperature are solved by expressing the temperature as well as 
the stream function in truncdled Fourier series. The partial dilferential equations are reduced 
to a system of simultaneous ordinary differential equations, which are then numerically 
integrated. The Reynolds numbers Rc, based on the diamctcr, range from 1 to 40; and the 
Prandtl number Pr for air is taken as 0.72. NavierStokes solutions at large distances from the 
cylinder obtained by coordinate expansion are used as velocity boundary conditions at 
infinity. This type of boundary condition at infinity is shown to be more appropriate than the 
free stream or Oseen approximation. Heat transfer in terms of local and mean Nusselt num- 
bers are computed and compared with available numerical and experimental data. 0 1986 

Academic Press, Inc. 

1. INTR~D~JCTION 

As a sequel to the authors’ previous work [lo], the temperature field and heat 
transfer from a circular cylinder in steady, laminar, incompressible flow up to 
Reynolds number 40 are obtained. The partial differential equations are reduced to 
ordinary ones by Fourier expansion of the stream function and temperature. The 
NavierStokes solution at large distances 137 is used as the far field velocity boun- 
dary conditions. This type of boundary conditions is shown to be more appropriate 
than the free stream or Oseen approximations used by most authors. See Table 1 of 
Fornberg [S], where the far field velocity boundary condition has been considered 
in detail. Fornbcrg recommended usage of the zero normal derivative boundary 
condition for Reynolds numbers up to 40; and the “mixed condition” for higher 
Reynolds numbers. We feel, however, that Chang’s asymptotic solution [3] could 
be consistently used for both Reynolds number ranges. For the temperature boun- 
dary condition at infinity, the situation is far less critical; and the free-stream con- 
dition may be used without any problem. 
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2. MATHEMATICAL FORMULATIONS 

We consider 2-dimensional uniform free-stream with velocity hi, an 
perature T, past a circular cylinder. The surface temperature P-W is assumed to be 
uniform. The density p, kinematic viscosity v, thermal conductivity k and specific 
heat cp of the air will be regarded as constants. Heating of the fluid by viscous dis- 
sipation from the cylinder is neglected. The flow is also assumed symmetrical about 
the axis of the cylinder for the Reynolds numbers up to 40. 

The vorticity transport equation in two dimensions is, ~o~dimensi~~a~i~e~ with 
respect to free stream speed and the radius of cyhnder, a 

where the velocity components in polar coordinates are derivable from stream 
function 

The vorticity is 

O(Y, 0) = v**. 
The Reynolds number based on the radius, a, of the cylinder is 

Re,=Q. 
V 

The energy equation in nondimensional form is 

where Prandtl number Pr and dimensionless temperature 7’” are 

Pr = pep/k = pvc,/k 

T* = T-T, 
T,- T,’ 

The no-slip and uniform surface temperature boundary conditions are 

$(r, 0) = Q, 

581/65/l-4 
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$r, f3)=0, (10) 

T*(r, e) = 1 (11) 

at r = 1, and uniform free-stream conditions 

$(r, 19) + r sin 6 

T*(r, 6) + 0 

(12) 

(13) 

asr+co. 
Fourth- and second-order partial differential equations (1) and (6), with boun- 

dary conditions (9)-(13), describe the flow and temperature fields under con- 
sideration. 

3. METHOD OF SOLUTION 

The method of series truncation is employed for the solution of the systems (l), 
(6), and (9)-( 13). The stream function and temperature are expanded as Fourier 
series 

+(r, 13) = f g,(r) sin 120 
fl=l 

(14) 

T*(r, 0) = f fr(r) cos 113 
I=0 

(15) 

where functions g,(r) and fi(r) are to be determined. Substitution of (14) into (1) 
yields a set of nonlinear ordinary differential equations for vorticity-transport as in 
Jafroudi and Yang [lo]. 

Substitution of (14) and (15) into (6) yields a set of linear equations for tem- 
perature 

f[f 
I=0 

;+ff;--f/ cosze+ f', ] y 2 5 [mf;g,cos 10 sin me] 
I=0 m=l 

+ 2 f [mg~f,sinI8sinm0]=0 (16) 
I=0 m=l 

with the boundary conditions 

fo(l) = 1, (17) 

“fit 1) = 0, I = 1, 2,..., N (18) 

fdr)=& l=O, 1, 2 ,..., Nas r--t co (19) 
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where prime denotes differentiation with respect to r. The system of second- 
ordinary differential equations (16) subjected to boundary conditions (17)> 
and (19) is to be numerically integrated to obtain the temperature. 

In this work, ten terms of the Fourier series were employed for velocity and te 
perature, respectively. 

Chang’s [3] outer matched asymptotic expansion was used for the third-order 
velocity boundary conditions at large distance. They are given in [lo] as 

where 

with R an artificial length scale such that E is a small parameter. 
The temperature boundary conditions (19) remain unchanged. Apelt [ l] and 

Takaisi [lS] have demonstrated that applying velocity boundary conditions (12) 
leads to substantial inaccuracies in the results, unless the radial distance at which 
the conditions (12) are imposed is very large. This matter will be illustrate 
Fig. 3 and discussed in Section 6. 

4. SURFACE QUANTITIES 

- 
The heat transfer expressed in terms of the Nusselt number, Nu, is define 

In the present formulation, it simplifies to 

7iG= -2f&(l) (231 

It is seen from Eq. (23) that only the first term in the Fourier expansion (15) 
contributes to the Nusselt number. The value of fO( 1) and its derivative do cba~g~ 
as the number of terms in expansion (15) is increased. 

5. NUMERICAL METHOD 

The efficient and simple initial value adjusting method with interval 
position for the solution of nonlinear multipoint boundary value ~r~~l~rn 
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(MPBVP) of nonlinear ordinary differential equations by Ojika [ 141, used in [lo], 
has been adopted for the present two-point boundary value problem. 

6. RESULTS AND DISCUSSIONS 

Numerical Results 

Computations have been carried out for the study of the incompressible, laminar 
flow past a circular cylinder at constant temperature for Reynolds numbers ranging 
from 1 to 40 and Prandtl number of 0.72 for air. 

In numerical computations the selection of outer boundary conditions at infinity 
is very crucial. See Fornberg [S]. Using the Oseen model and our numerical 
method, we plotted the component of tangential velocity at the angle of 0 = 7c/2 in 
Fig. 1 for Re = 1 and radii Y, equal to 41,61, and 91 based on unit radius of the 
cylinder. It is seen in Fig. 1 that, by increasing rco to 61 or 91, the profiles of 
tangential velocity for different radii do not coincide. This clearly shows that rm = 41 
is not far enough to impose the outer boundary conditions. The problem of outer 
boundary condition may be alleviated by using Chang’s [3] third-order coordinate 
expansion of the Navier-Stokes solutions at large distances from the cylinder. As a 
test of accuracy of the solution obtained from these boundary conditions, we plot- 
ted the component of tangential velocity at the angle 0 = n/2 in Fig. 2 for Re = 1 
and three radii I, of 41,61, and 91. In this figure, the results of outer expansion (3) 

FIG. 1. Tangential velocity profiles at 0 = 7c/2 and Re = 1 Oseen boundary conditions at I, = 41, 61, 
and 91. 
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FiG. 2. Matching of computed tangential velocity profiles with far fie!d NavierPStokes soiutions at 
8 = 7112, Re = 1, and r, = 41,61, and 91. 

with (149, (20), and (21) are also plotted from the outer distance to the surface of 
the cylinder to show where the matching occurs. This figure shows that there are no 
appreciable differences among the results of tangential velocity for three d~~e~e~~ 
radii Y, . Using uniform flow condition or Oseen flow as outer boundary con 
forced some mass into the inner region in order to conserve mass, as seen in Fig. 1. 
But by using the higher order approximation in outer boundary, the mass is 

31 
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FIG. 3. Comparison of tangential velocity profiles at 8 = n/2, Re = 1, ra: = 91, with Oseen and far 
Eeld Navier-Stokes solutions as boundary conditions. 
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FIG. 4. Temperature profiles at 0 = 7t/2, Re = 1, Pr =0.72, and I, = 41,61, and 91. 

automatically conserved, and mass does not need to be forced inward, see Fig. 2. 
The component of tangential velocity is also plotted in Fig. 3 for rm = 91 and 
Re = 1. The outer boundary conditions are chosen from Oseen flow and Chang’s 
solution to the third order. Comparison of these two profiles shows that much 
larger distances, Y, are required for the imposing of Oxen flow as an outer boun- 
dary condition. 

In Fig. 4 three temperature profiles at &‘= 7c/2 for Re = 1 and Pr = 0.72 are plot- 
ted against radial distances of 41, 61, and 91 from the center of a unit radius cylin- 
der. The uniform temperature T, is used as the outer boundary condition (19) for 
the energy equation (16). It is seen that the three temperature profiles 

FIG. 5. Isotherms from the tenth truncation at Re = 1 and Pr = 0.72. 
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FIG. 6. Average Nusselt number versus Reynolds number (Pr = 0.72) from different truncations: 
second (U), third (A), fourth (x ), fifth (0), sixth (+), seventh (0), eight (H ), ninth (z), and tenth 
(*I. 

corresponding to the three radii are essentially the same. This means that the 
uniform temperature condition T, as the far field boundary condition is adequate. 
On the other hand, more refined far field boundary conditions should be used for 
the vorticity equation as discussed previously. 

Note that the distance where the outer boundary conditions are ~rn~os~~ 
decreases as flow Reynolds number increases. As the viscous layer next to the cyhn- 
der surface becomes thinner at larger Reynolds numbers, shorter distances could be 
employed to match the far field conditions. 

After all these trials, we selected the third-order outer expansions (20) an 
instead of the uniform flow condition (12) for vorticity equation (1) and ~~~f~r~~ 
temperature condition (19) for energy equation (6). For expediency, we chose an 
outer boundary of 91 for Reynolds numbers between 1 and 10; and 41 for Reynolds 
numbers between 10 and 40 and higher. To be consistent, we also used the same 
distance rco, at which the outer boundary condition is imposed, for all tr~~c~t~o~s 
for a given Reynolds number and Pr = 0.72. 

FIG. 7. Temperature profiles from the tenth truncation at Re = 1 and Pr = 0.72. 
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T 1 

FIG. 8. Local Nusselt number from the tenth truncation ( - ) at Re = 1, 7, and 40, and Pr = 0.72, and 
(0) Dennis et al. (1968). 

Because of the capacity limitation of the computer, we employed only ten terms 
of Fourier series for velocity and temperature, respectively. More terms in the 
Fourier series would enhance the accuracy of the results for higher Reynolds num- 
bers. Since the tenth truncation yields the best obtainable approximation in the 
present work, the stream function (14), tangential and radial velocity profiles (2) 
and (3), and temperature profiles (15) have been so computed. Figure 5 shows the 
isotherms for Re = 1, and Pr = 0.72. Figure 6 shows the average Nusselt number NU 
versus Reynolds number Re from the second to tenth truncations. The temperature 
profile (15) for various angles are illustrated in Fig. 7 for Re = 1 and Pr = 0.72. 

Comparison of Results 

In Fig. 8, we plotted the local Nusselt number from the tenth truncation of the 
present work and the numerical computation of Dennis, Hudson and Smith [6] for 
Reynolds number 1,7, and 40 and Pr = 0.73. The agreements are excellent for all 
Reynolds numbers. Also the local Nusselt numbers at Reynolds numbers 20 and 30 
are plotted in Fig. 9 along with the experimental data of Eckert and Soehngen [7]. 
This figure shows that the trend of present semi analytic-numerical and 
experimental data are the same up to 8 N 128”, but after this angle, the data shows 
higher value for Nusselt number when it approaches the wake of the cylinder. 

The average Nusselt number is given in Table I. The result of present study 
shows good agreement with numerical solution of Dennis et al. and Apelt and 
Ledwich [2]. 

O%e$-sr 180 

FIG. 9. Comparison of local Nusselt number from the tenth truncation ( - ) at Re = 20, 30, and 
Pr = 0.72 with experiments of (0 ) Eckert and Soehngen (1952) at Re = 23, Pr = 0.72. 
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TABLE I 

Comparison of Average Nusselt Number from the Tenth 
Truncation with Existing Numerical Solutions 

Re 

Apelt Dennis 
and Hudson & 

Ledwich Smith 
(1979) (1968) 

10th 
Truncation 
(Present ) 

1 
2 
4 
5 
I 

10 
15 
20 
30 
40 

0.849 0.812 
1.023 
I.318 

1.426 
1.633 

1.864 1.897 
2.193 

2.557 

3.255 3.480 

0.805 
1.012 
1.29% 
1.410 
1.59% 
I.821 
2.116 
2.433 
2.850 
3.200 

The average Nusselt numbers are shown in Fig. 10 along with earlier exper’ 
tal data. The results from the present study agree well with the data of Cohi 
Williams [5] and King [13]. The present result lies slightly below the data o 
Hilpert [9], Kennelly and Sanborn [ll], and Kennelly, Wright, and van 
em 

7. CONCLUSIONS 

Nusselt numbers are in good agreement with those of Gollis and Wilhams and 
Eckert and Soehngen. The results of Collis and Williams and King for the average 

201 

FIG. IO. Comparison of average Nusselt number from the tenth trucation versus Reynolds number 
(Pr = 0.7’2) with different experiments: ( x ), Kennelly et al. (1909); ( + ), Kennely and Sanborn (1914); 
(0 ), King (1914); (0), Hilpert (1933); (0 ), Collis and Williams (1959); (- ) tenth truncation (present). 
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Nusselt number have also shown satisfactory agreement with the result of the 
present work. The good agreement in this work could be attributed to the fact that 
the Nusselt number depends only on the slope of the flow temperature at the wall 
and not the detailed temperature distribution which is also the case in integral 
methods. 

One of the most crucial tasks in computational fluid dynamics is the selection of 
the outer velocity boundary conditions. To overcome the limitation of the tinite 
computational domain, we recommend the employment of the Navier-Stokes 
solutions at large distances from a 2-dimensional finite body obtained by Chang 
[3] as the velocity boundary conditions. For steady, incompressible, laminar flow 
over 3-dimensional bodies, the velocity boundary conditions at large distances may 
be obtained from the asymptotic solutions of Childress [4], although the 3-dimen- 
sional relief effects could reduce their importance. It is worthwhile to obtain 
asymptotic solutions for compressible, and/or turbulent flows to be used as velocity 
boundary conditions for such flows. The reason is that the region in computing 
unbounded flow over a finite body is always finite. On the other hand, as the 
present computation shows, the free-stream temperature boundary condition is 
quite adequate. 
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